High-dimensional Estimation with Geometric Constraints

نویسندگان

  • ROMAN VERSHYNIN
  • ELENA YUDOVINA
چکیده

Consider measuring a vector x ∈ R through the inner product with several measurement vectors, a1, a2, . . . , am. It is common in both signal processing and statistics to assume the linear response model yi = 〈ai, x〉+ εi, where εi is a noise term. However, in practice the precise relationship between the signal x and the observations yi may not follow the linear model, and in some cases it may not even be known. To address this challenge, in this paper we propose a general model where it is only assumed that each observation yi may depend on ai only through 〈ai, x〉. We do not assume that the dependence is known. This is a form of the semiparametric-single index model, and it includes the linear model as well as many forms of the generalized linear model as special cases. We further assume that the signal x has some structure, and we formulate this as a general assumption that x belongs to some known (but arbitrary) feasible set K ⊆ R. We carefully detail the benefit of using the signal structure to improve estimation. The theory is based on the mean width of K, a geometric parameter which can be used to understand its effective dimension in estimation problems. We determine a simple, efficient two-step procedure for estimating the signal based on this model – a linear estimation followed by metric projection onto K. We give general conditions under which the estimator is minimax optimal up to a constant. This leads to the intriguing conclusion that in the high noise regime, an unknown non-linearity in the observations does not significantly reduce one’s ability to determine the signal, even when the non-linearity may be non-invertible. Our results may be specialized to understand the effect of non-linearities in compressed sensing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation in High Dimensions: a Geometric Perspective

This tutorial provides an exposition of a flexible geometric framework for high dimensional estimation problems with constraints. The tutorial develops geometric intuition about high dimensional sets, justifies it with some results of asymptotic convex geometry, and demonstrates connections between geometric results and estimation problems. The theory is illustrated with applications to sparse ...

متن کامل

Estimation of Concentrations in Chemical Systems at Equilibrium Using Geometric Programming

Geometric programming is a mathematical technique, which has been developed for nonlinear optimization problems. This technique is based on the dual program with linear constraints. Determination of species concentrations in chemical equilibrium conditions is one of its applications in chemistry and chemical engineering fields. In this paper, the principles of geometric programming and its comp...

متن کامل

Application of Network RTK Positions and Geometric Constraints to the Problem of Attitude Determination Using the GPS Carrier Phase Measurements

Nowadays, navigation is an unavoidable fact in military and civil aerial transportations. The Global Positioning System (GPS) is commonly used for computing the orientation or attitude of a moving platform. The relative positions of the GPS antennas are computed using the GPS code and/or phase measurements. To achieve a precise attitude determination, Carrier phase observations of GPS requiring...

متن کامل

Deep Kinematic Pose Regression

Learning articulated object pose is inherently difficult because the pose is high dimensional but has many structural constraints. Most existing work do not model such constraints and does not guarantee the geometric validity of their pose estimation, therefore requiring a post-processing to recover the correct geometry if desired, which is cumbersome and sub-optimal. In this work, we propose t...

متن کامل

Einstein structures on four-dimensional nutral Lie groups

When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...

متن کامل

A New Multistage Approach to Motion and Structure Estimation by Gradually Enforcing Geometric Constraints

The standard 2-stage algorithm first estimates the 9 essential parameters defined up to a scale factor and then refines the motion estimation based on some statistically optimal criteria. We propose in this paper a novel approach by introducing an intermediate stage which consists in estimating a 3 3 matrix defined up to a scale factor by imposing the rank-2 constraint (the matrix has seven ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014